Paper Reading AI Learner

Learning to Fuse Asymmetric Feature Maps in Siamese Trackers

2020-12-04 18:55:53
Wencheng Han, Xingping Dong, Fahad Shahbaz Khan, Ling Shao, Jianbing Shen

Abstract

In recent years, Siamese-based trackers have achieved promising performance in visual tracking. Most recent Siamese-based trackers typically employ a depth-wise cross-correlation (DW-XCorr) to obtain multi-channel correlation information from the two feature maps (target and search region). However, DW-XCorr has several limitations within Siamese-based tracking: it can easily be fooled by distractors, has fewer activated channels, and provides weak discrimination of object boundaries. Further, DW-XCorr is a handcrafted parameter-free module and cannot fully benefit from offline learning on large-scale data. We propose a learnable module, called the asymmetric convolution (ACM), which learns to better capture the semantic correlation information in offline training on large-scale data. Different from DW-XCorr and its predecessor (XCorr), which regard a single feature map as the convolution kernel, our ACM decomposes the convolution operation on a concatenated feature map into two mathematically equivalent operations, thereby avoiding the need for the feature maps to be of the same size (width and height) during concatenation. Our ACM can incorporate useful prior information, such as bounding-box size, with standard visual features. Furthermore, ACM can easily be integrated into existing Siamese trackers based on DW-XCorr or XCorr. To demonstrate its generalization ability, we integrate ACM into three representative trackers: SiamFC, SiamRPN++, and SiamBAN. Our experiments reveal the benefits of the proposed ACM, which outperforms existing methods on six tracking benchmarks. On the LaSOT test set, our ACM-based tracker obtains a significant improvement of 5.8% in terms of success (AUC), over the baseline.

Abstract (translated)

URL

https://arxiv.org/abs/2012.02776

PDF

https://arxiv.org/pdf/2012.02776.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot