Paper Reading AI Learner

Improving Human-Labeled Data through Dynamic Automatic Conflict Resolution

2020-12-08 02:22:09
David Q. Sun, Hadas Kotek, Christopher Klein, Mayank Gupta, William Li, Jason D. Williams

Abstract

This paper develops and implements a scalable methodology for (a) estimating the noisiness of labels produced by a typical crowdsourcing semantic annotation task, and (b) reducing the resulting error of the labeling process by as much as 20-30% in comparison to other common labeling strategies. Importantly, this new approach to the labeling process, which we name Dynamic Automatic Conflict Resolution (DACR), does not require a ground truth dataset and is instead based on inter-project annotation inconsistencies. This makes DACR not only more accurate but also available to a broad range of labeling tasks. In what follows we present results from a text classification task performed at scale for a commercial personal assistant, and evaluate the inherent ambiguity uncovered by this annotation strategy as compared to other common labeling strategies.

Abstract (translated)

URL

https://arxiv.org/abs/2012.04169

PDF

https://arxiv.org/pdf/2012.04169.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot