Paper Reading AI Learner

Interpreting Neural Networks as Gradual Argumentation Frameworks

2020-12-10 15:18:15
Nico Potyka

Abstract

We show that an interesting class of feed-forward neural networks can be understood as quantitative argumentation frameworks. This connection creates a bridge between research in Formal Argumentation and Machine Learning. We generalize the semantics of feed-forward neural networks to acyclic graphs and study the resulting computational and semantical properties in argumentation graphs. As it turns out, the semantics gives stronger guarantees than existing semantics that have been tailor-made for the argumentation setting. From a machine-learning perspective, the connection does not seem immediately helpful. While it gives intuitive meaning to some feed-forward-neural networks, they remain difficult to understand due to their size and density. However, the connection seems helpful for combining background knowledge in form of sparse argumentation networks with dense neural networks that have been trained for complementary purposes and for learning the parameters of quantitative argumentation frameworks in an end-to-end fashion from data.

Abstract (translated)

URL

https://arxiv.org/abs/2012.05738

PDF

https://arxiv.org/pdf/2012.05738.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot