Paper Reading AI Learner

Uncertainty-Aware Deep Calibrated Salient Object Detection

2020-12-10 23:28:36
Jing Zhang, Yuchao Dai, Xin Yu, Mehrtash Harandi, Nick Barnes, Richard Hartley

Abstract

Existing deep neural network based salient object detection (SOD) methods mainly focus on pursuing high network accuracy. However, those methods overlook the gap between network accuracy and prediction confidence, known as the confidence uncalibration problem. Thus, state-of-the-art SOD networks are prone to be overconfident. In other words, the predicted confidence of the networks does not reflect the real probability of correctness of salient object detection, which significantly hinder their real-world applicability. In this paper, we introduce an uncertaintyaware deep SOD network, and propose two strategies from different perspectives to prevent deep SOD networks from being overconfident. The first strategy, namely Boundary Distribution Smoothing (BDS), generates continuous labels by smoothing the original binary ground-truth with respect to pixel-wise uncertainty. The second strategy, namely Uncertainty-Aware Temperature Scaling (UATS), exploits a relaxed Sigmoid function during both training and testing with spatially-variant temperature scaling to produce softened output. Both strategies can be incorporated into existing deep SOD networks with minimal efforts. Moreover, we propose a new saliency evaluation metric, namely dense calibration measure C, to measure how the model is calibrated on a given dataset. Extensive experimental results on seven benchmark datasets demonstrate that our solutions can not only better calibrate SOD models, but also improve the network accuracy.

Abstract (translated)

URL

https://arxiv.org/abs/2012.06020

PDF

https://arxiv.org/pdf/2012.06020.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot