Paper Reading AI Learner

Learning Representations from Temporally Smooth Data

2020-12-12 01:24:36
Shima Rahimi Moghaddam, Fanjun Bu, Christopher J. Honey

Abstract

Events in the real world are correlated across nearby points in time, and we must learn from this temporally smooth data. However, when neural networks are trained to categorize or reconstruct single items, the common practice is to randomize the order of training items. What are the effects of temporally smooth training data on the efficiency of learning? We first tested the effects of smoothness in training data on incremental learning in feedforward nets and found that smoother data slowed learning. Moreover, sampling so as to minimize temporal smoothness produced more efficient learning than sampling randomly. If smoothness generally impairs incremental learning, then how can networks be modified to benefit from smoothness in the training data? We hypothesized that two simple brain-inspired mechanisms, leaky memory in activation units and memory-gating, could enable networks to rapidly extract useful representations from smooth data. Across all levels of data smoothness, these brain-inspired architectures achieved more efficient category learning than feedforward networks. This advantage persisted, even when leaky memory networks with gating were trained on smooth data and tested on randomly-ordered data. Finally, we investigated how these brain-inspired mechanisms altered the internal representations learned by the networks. We found that networks with multi-scale leaky memory and memory-gating could learn internal representations that un-mixed data sources which vary on fast and slow timescales across training samples. Altogether, we identified simple mechanisms enabling neural networks to learn more quickly from temporally smooth data, and to generate internal representations that separate timescales in the training signal.

Abstract (translated)

URL

https://arxiv.org/abs/2012.06694

PDF

https://arxiv.org/pdf/2012.06694.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot