Paper Reading AI Learner

DN-ResNet: Efficient Deep Residual Network for Image Denoising

2018-10-16 00:33:09
Haoyu Ren, Mostafa El-Khamy, Jungwon Lee

Abstract

A deep learning approach to blind denoising of images without complete knowledge of the noise statistics is considered. We propose DN-ResNet, which is a deep convolutional neural network (CNN) consisting of several residual blocks (ResBlocks). With cascade training, DN-ResNet is more accurate and more computationally efficient than the state of art denoising networks. An edge-aware loss function is further utilized in training DN-ResNet, so that the denoising results have better perceptive quality compared to conventional loss function. Next, we introduce the depthwise separable DN-ResNet (DS-DN-ResNet) utilizing the proposed Depthwise Seperable ResBlock (DS-ResBlock) instead of standard ResBlock, which has much less computational cost. DS-DN-ResNet is incrementally evolved by replacing the ResBlocks in DN-ResNet by DS-ResBlocks stage by stage. As a result, high accuracy and good computational efficiency are achieved concurrently. Whereas previous state of art deep learning methods focused on denoising either Gaussian or Poisson corrupted images, we consider denoising images having the more practical Poisson with additive Gaussian noise as well. The results show that DN-ResNets are more efficient, robust, and perform better denoising than current state of art deep learning methods, as well as the popular variants of the BM3D algorithm, in cases of blind and non-blind denoising of images corrupted with Poisson, Gaussian or Poisson-Gaussian noise. Our network also works well for other image enhancement task such as compressed image restoration.

Abstract (translated)

URL

https://arxiv.org/abs/1810.06766

PDF

https://arxiv.org/pdf/1810.06766.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot