Paper Reading AI Learner

Sign-Agnostic Implicit Learning of Surface Self-Similarities for Shape Modeling and Reconstruction from Raw Point Clouds

2020-12-14 13:33:22
Wenbin Zhao, Jiabao Lei, Yuxin Wen, Jianguo Zhang, Kui Jia

Abstract

Shape modeling and reconstruction from raw point clouds of objects stand as a fundamental challenge in vision and graphics research. Classical methods consider analytic shape priors; however, their performance degraded when the scanned points deviate from the ideal conditions of cleanness and completeness. Important progress has been recently made by data-driven approaches, which learn global and/or local models of implicit surface representations from auxiliary sets of training shapes. Motivated from a universal phenomenon that self-similar shape patterns of local surface patches repeat across the entire surface of an object, we aim to push forward the data-driven strategies and propose to learn a local implicit surface network for a shared, adaptive modeling of the entire surface for a direct surface reconstruction from raw point cloud; we also enhance the leveraging of surface self-similarities by improving correlations among the optimized latent codes of individual surface patches. Given that orientations of raw points could be unavailable or noisy, we extend sign agnostic learning into our local implicit model, which enables our recovery of signed implicit fields of local surfaces from the unsigned inputs. We term our framework as Sign-Agnostic Implicit Learning of Surface Self-Similarities (SAIL-S3). With a global post-optimization of local sign flipping, SAIL-S3 is able to directly model raw, un-oriented point clouds and reconstruct high-quality object surfaces. Experiments show its superiority over existing methods.

Abstract (translated)

URL

https://arxiv.org/abs/2012.07498

PDF

https://arxiv.org/pdf/2012.07498.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot