Paper Reading AI Learner

General Policies, Serializations, and Planning Width

2020-12-15 01:33:59
Blai Bonet, Hector Geffner

Abstract

It has been observed that in many of the benchmark planning domains, atomic goals can be reached with a simple polynomial exploration procedure, called IW, that runs in time exponential in the problem width. Such problems have indeed a bounded width: a width that does not grow with the number of problem variables and is often no greater than two. Yet, while the notion of width has become part of the state-of-the-art planning algorithms like BFWS, there is still no good explanation for why so many benchmark domains have bounded width. In this work, we address this question by relating bounded width and serialized width to ideas of generalized planning, where general policies aim to solve multiple instances of a planning problem all at once. We show that bounded width is a property of planning domains that admit optimal general policies in terms of features that are explicitly or implicitly represented in the domain encoding. The results are extended to much larger class of domains with bounded serialized width where the general policies do not have to be optimal. The study leads also to a new simple, meaningful, and expressive language for specifying domain serializations in the form of policy sketches which can be used for encoding domain control knowledge by hand or for learning it from traces. The use of sketches and the meaning of the theoretical results are all illustrated through a number of examples.

Abstract (translated)

URL

https://arxiv.org/abs/2012.08033

PDF

https://arxiv.org/pdf/2012.08033.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot