Paper Reading AI Learner

Towards Improving Spatiotemporal Action Recognition in Videos

2020-12-15 05:21:50
Shentong Mo, Xiaoqing Tan, Jingfei Xia, Pinxu Ren

Abstract

Spatiotemporal action recognition deals with locating and classifying actions in videos. Motivated by the latest state-of-the-art real-time object detector You Only Watch Once (YOWO), we aim to modify its structure to increase action detection precision and reduce computational time. Specifically, we propose four novel approaches in attempts to improve YOWO and address the imbalanced class issue in videos by modifying the loss function. We consider two moderate-sized datasets to apply our modification of YOWO - the popular Joint-annotated Human Motion Data Base (J-HMDB-21) and a private dataset of restaurant video footage provided by a Carnegie Mellon University-based startup, this http URL. The latter involves fast-moving actions with small objects as well as unbalanced data classes, making the task of action localization more challenging. We implement our proposed methods in the GitHub repository this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2012.08097

PDF

https://arxiv.org/pdf/2012.08097


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot