Paper Reading AI Learner

Point-Level Temporal Action Localization: Bridging Fully-supervised Proposals to Weakly-supervised Losses

2020-12-15 12:11:48
Chen Ju, Peisen Zhao, Ya Zhang, Yanfeng Wang, Qi Tian

Abstract

Point-Level temporal action localization (PTAL) aims to localize actions in untrimmed videos with only one timestamp annotation for each action instance. Existing methods adopt the frame-level prediction paradigm to learn from the sparse single-frame labels. However, such a framework inevitably suffers from a large solution space. This paper attempts to explore the proposal-based prediction paradigm for point-level annotations, which has the advantage of more constrained solution space and consistent predictions among neighboring frames. The point-level annotations are first used as the keypoint supervision to train a keypoint detector. At the location prediction stage, a simple but effective mapper module, which enables back-propagation of training errors, is then introduced to bridge the fully-supervised framework with weak supervision. To our best of knowledge, this is the first work to leverage the fully-supervised paradigm for the point-level setting. Experiments on THUMOS14, BEOID, and GTEA verify the effectiveness of our proposed method both quantitatively and qualitatively, and demonstrate that our method outperforms state-of-the-art methods.

Abstract (translated)

URL

https://arxiv.org/abs/2012.08236

PDF

https://arxiv.org/pdf/2012.08236


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot