Paper Reading AI Learner

Reduction in the complexity of 1D 1H-NMR spectra by the use of Frequency to Information Transformation

2020-12-16 21:08:35
Homayoun Valafar, Faramarz Valafar

Abstract

Analysis of 1H-NMR spectra is often hindered by large variations that occur during the collection of these spectra. Large solvent and standard peaks, base line drift and negative peaks (due to improper phasing) are among some of these variations. Furthermore, some instrument dependent alterations, such as incorrect shimming, are also embedded in the recorded spectrum. The unpredictable nature of these alterations of the signal has rendered the automated and instrument independent computer analysis of these spectra unreliable. In this paper, a novel method of extracting the information content of a signal (in this paper, frequency domain 1H-NMR spectrum), called the frequency-information transformation (FIT), is presented and compared to a previously used method (SPUTNIK). FIT can successfully extract the relevant information to a pattern matching task present in a signal, while discarding the remainder of a signal by transforming a Fourier transformed signal into an information spectrum (IS). This technique exhibits the ability of decreasing the inter-class correlation coefficients while increasing the intra-class correlation coefficients. Different spectra of the same molecule, in other words, will resemble more to each other while the spectra of different molecules will look more different from each other. This feature allows easier automated identification and analysis of molecules based on their spectral signatures using computer algorithms.

Abstract (translated)

URL

https://arxiv.org/abs/2012.09267

PDF

https://arxiv.org/pdf/2012.09267.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot