Paper Reading AI Learner

An Empirical Study of Using Pre-trained BERT Models for Vietnamese Relation Extraction Task at VLSP 2020

2020-12-18 14:53:49
Pham Quang Nhat Minh

Abstract

In this paper, we present an empirical study of using pre-trained BERT models for relation extraction task at VLSP 2020 Evaluation Campaign. We applied two state-of-the-art BERT-based models: R-BERT and BERT model with entity starts. For each model, we compared two pre-trained BERT models: FPTAI/vibert and NlpHUST/vibert4news. We found that NlpHUST/vibert4news model significantly outperforms FPTAI/vibert for Vietnamese relation extraction task. Finally, we proposed a simple ensemble model which combines R-BERT and BERT with entity starts. Our proposed ensemble model slightly improved against two single models on the development data provided by the task organizers.

Abstract (translated)

URL

https://arxiv.org/abs/2012.10275

PDF

https://arxiv.org/pdf/2012.10275.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot