Paper Reading AI Learner

Confronting Abusive Language Online: A Survey from the Ethical and Human Rights Perspective

2020-12-22 19:27:11
Svetlana Kiritchenko, Isar Nejadgholi, Kathleen C. Fraser

Abstract

The pervasiveness of abusive content on the internet can lead to severe psychological and physical harm. Significant effort in Natural Language Processing (NLP) research has been devoted to addressing this problem through abusive content detection and related sub-areas, such as the detection of hate speech, toxicity, cyberbullying, etc. Although current technologies achieve high classification performance in research studies, it has been observed that the real-life application of this technology can cause unintended harms, such as the silencing of under-represented groups. We review a large body of NLP research on automatic abuse detection with a new focus on ethical challenges, organized around eight established ethical principles: privacy, accountability, safety and security, transparency and explainability, fairness and non-discrimination, human control of technology, professional responsibility, and promotion of human values. In many cases, these principles relate not only to situational ethical codes, which may be context-dependent, but are in fact connected to universal human rights, such as the right to privacy, freedom from discrimination, and freedom of expression. We highlight the need to examine the broad social impacts of this technology, and to bring ethical and human rights considerations to every stage of the application life-cycle, from task formulation and dataset design, to model training and evaluation, to application deployment. Guided by these principles, we identify several opportunities for rights-respecting, socio-technical solutions to detect and confront online abuse, including 'nudging', 'quarantining', value sensitive design, counter-narratives, style transfer, and AI-driven public education applications.

Abstract (translated)

URL

https://arxiv.org/abs/2012.12305

PDF

https://arxiv.org/pdf/2012.12305.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot