Paper Reading AI Learner

Speech Enhancement based on Denoising Autoencoder with Multi-branched Encoders

2020-12-25 01:58:53
Cheng Yu, Ryandhimas E. Zezario, Syu-Siang Wang, Jonathan Sherman, Yi-Yen Hsieh, Xugang Lu, Hsin-Min Wang, Yu Tsao

Abstract

Deep learning-based models have greatly advanced the performance of speech enhancement (SE) systems. However, two problems remain unsolved, which are closely related to model generalizability to noisy conditions: (1) mismatched noisy condition during testing, i.e., the performance is generally sub-optimal when models are tested with unseen noise types that are not involved in the training data; (2) local focus on specific noisy conditions, i.e., models trained using multiple types of noises cannot optimally remove a specific noise type even though the noise type has been involved in the training data. These problems are common in real applications. In this paper, we propose a novel denoising autoencoder with a multi-branched encoder (termed DAEME) model to deal with these two problems. In the DAEME model, two stages are involved: training and testing. In the training stage, we build multiple component models to form a multi-branched encoder based on a decision tree (DSDT). The DSDT is built based on prior knowledge of speech and noisy conditions (the speaker, environment, and signal factors are considered in this paper), where each component of the multi-branched encoder performs a particular mapping from noisy to clean speech along the branch in the DSDT. Finally, a decoder is trained on top of the multi-branched encoder. In the testing stage, noisy speech is first processed by each component model. The multiple outputs from these models are then integrated into the decoder to determine the final enhanced speech. Experimental results show that DAEME is superior to several baseline models in terms of objective evaluation metrics, automatic speech recognition results, and quality in subjective human listening tests.

Abstract (translated)

URL

https://arxiv.org/abs/2001.01538

PDF

https://arxiv.org/pdf/2001.01538.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot