Paper Reading AI Learner

Color Channel Perturbation Attacks for Fooling Convolutional Neural Networks and A Defense Against Such Attacks

2020-12-20 11:35:29
Jayendra Kantipudi, Shiv Ram Dubey, Soumendu Chakraborty

Abstract

The Convolutional Neural Networks (CNNs) have emerged as a very powerful data dependent hierarchical feature extraction method. It is widely used in several computer vision problems. The CNNs learn the important visual features from training samples automatically. It is observed that the network overfits the training samples very easily. Several regularization methods have been proposed to avoid the overfitting. In spite of this, the network is sensitive to the color distribution within the images which is ignored by the existing approaches. In this paper, we discover the color robustness problem of CNN by proposing a Color Channel Perturbation (CCP) attack to fool the CNNs. In CCP attack new images are generated with new channels created by combining the original channels with the stochastic weights. Experiments were carried out over widely used CIFAR10, Caltech256 and TinyImageNet datasets in the image classification framework. The VGG, ResNet and DenseNet models are used to test the impact of the proposed attack. It is observed that the performance of the CNNs degrades drastically under the proposed CCP attack. Result show the effect of the proposed simple CCP attack over the robustness of the CNN trained model. The results are also compared with existing CNN fooling approaches to evaluate the accuracy drop. We also propose a primary defense mechanism to this problem by augmenting the training dataset with the proposed CCP attack. The state-of-the-art performance using the proposed solution in terms of the CNN robustness under CCP attack is observed in the experiments. The code is made publicly available at \url{this https URL}.

Abstract (translated)

URL

https://arxiv.org/abs/2012.14456

PDF

https://arxiv.org/pdf/2012.14456.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot