Paper Reading AI Learner

Advances in deep learning methods for pavement surface crack detection and identification with visible light visual images

2020-12-29 11:10:12
Kailiang Lu

Abstract

Compared to NDT and health monitoring method for cracks in engineering structures, surface crack detection or identification based on visible light images is non-contact, with the advantages of fast speed, low cost and high precision. Firstly, typical pavement (concrete also) crack public data sets were collected, and the characteristics of sample images as well as the random variable factors, including environmental, noise and interference etc., were summarized. Subsequently, the advantages and disadvantages of three main crack identification methods (i.e., hand-crafted feature engineering, machine learning, deep learning) were compared. Finally, from the aspects of model architecture, testing performance and predicting effectiveness, the development and progress of typical deep learning models, including self-built CNN, transfer learning(TL) and encoder-decoder(ED), which can be easily deployed on embedded platform, were reviewed. The benchmark test shows that: 1) It has been able to realize real-time pixel-level crack identification on embedded platform: the entire crack detection average time cost of an image sample is less than 100ms, either using the ED method (i.e., FPCNet) or the TL method based on InceptionV3. It can be reduced to less than 10ms with TL method based on MobileNet (a lightweight backbone base network). 2) In terms of accuracy, it can reach over 99.8% on CCIC which is easily identified by human eyes. On SDNET2018, some samples of which are difficult to be identified, FPCNet can reach 97.5%, while TL method is close to 96.1%. To the best of our knowledge, this paper for the first time comprehensively summarizes the pavement crack public data sets, and the performance and effectiveness of surface crack detection and identification deep learning methods for embedded platform, are reviewed and evaluated.

Abstract (translated)

URL

https://arxiv.org/abs/2012.14704

PDF

https://arxiv.org/pdf/2012.14704.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot