Paper Reading AI Learner

Depth as Attention for Face Representation Learning

2021-01-03 16:19:34
Hardik Uppal, Alireza Sepas-Moghaddam, Michael Greenspan, Ali Etemad

Abstract

Face representation learning solutions have recently achieved great success for various applications such as verification and identification. However, face recognition approaches that are based purely on RGB images rely solely on intensity information, and therefore are more sensitive to facial variations, notably pose, occlusions, and environmental changes such as illumination and background. A novel depth-guided attention mechanism is proposed for deep multi-modal face recognition using low-cost RGB-D sensors. Our novel attention mechanism directs the deep network "where to look" for visual features in the RGB image by focusing the attention of the network using depth features extracted by a Convolution Neural Network (CNN). The depth features help the network focus on regions of the face in the RGB image that contains more prominent person-specific information. Our attention mechanism then uses this correlation to generate an attention map for RGB images from the depth features extracted by CNN. We test our network on four public datasets, showing that the features obtained by our proposed solution yield better results on the Lock3DFace, CurtinFaces, IIIT-D RGB-D, and KaspAROV datasets which include challenging variations in pose, occlusion, illumination, expression, and time-lapse. Our solution achieves average (increased) accuracies of 87.3\% (+5.0\%), 99.1\% (+0.9\%), 99.7\% (+0.6\%) and 95.3\%(+0.5\%) for the four datasets respectively, thereby improving the state-of-the-art. We also perform additional experiments with thermal images, instead of depth images, showing the high generalization ability of our solution when adopting other modalities for guiding the attention mechanism instead of depth information

Abstract (translated)

URL

https://arxiv.org/abs/2101.00652

PDF

https://arxiv.org/pdf/2101.00652.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot