Paper Reading AI Learner

Generalized Latency Performance Estimation for Once-For-All Neural Architecture Search

2021-01-04 00:48:09
Muhtadyuzzaman Syed, Arvind Akpuram Srinivasan

Abstract

Neural Architecture Search (NAS) has enabled the possibility of automated machine learning by streamlining the manual development of deep neural network architectures defining a search space, search strategy, and performance estimation strategy. To solve the need for multi-platform deployment of Convolutional Neural Network (CNN) models, Once-For-All (OFA) proposed to decouple Training and Search to deliver a one-shot model of sub-networks that are constrained to various accuracy-latency tradeoffs. We find that the performance estimation strategy for OFA's search severely lacks generalizability of different hardware deployment platforms due to single hardware latency lookup tables that require significant amount of time and manual effort to build beforehand. In this work, we demonstrate the framework for building latency predictors for neural network architectures to address the need for heterogeneous hardware support and reduce the overhead of lookup tables altogether. We introduce two generalizability strategies which include fine-tuning using a base model trained on a specific hardware and NAS search space, and GPU-generalization which trains a model on GPU hardware parameters such as Number of Cores, RAM Size, and Memory Bandwidth. With this, we provide a family of latency prediction models that achieve over 50% lower RMSE loss as compared to with ProxylessNAS. We also show that the use of these latency predictors match the NAS performance of the lookup table baseline approach if not exceeding it in certain cases.

Abstract (translated)

URL

https://arxiv.org/abs/2101.00732

PDF

https://arxiv.org/pdf/2101.00732.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot