Paper Reading AI Learner

Noise Sensitivity-Based Energy Efficient and Robust Adversary Detection in Neural Networks

2021-01-05 14:31:53
Rachel Sterneck, Abhishek Moitra, Priyadarshini Panda

Abstract

Neural networks have achieved remarkable performance in computer vision, however they are vulnerable to adversarial examples. Adversarial examples are inputs that have been carefully perturbed to fool classifier networks, while appearing unchanged to humans. Based on prior works on detecting adversaries, we propose a structured methodology of augmenting a deep neural network (DNN) with a detector subnetwork. We use $\textit{Adversarial Noise Sensitivity}$ (ANS), a novel metric for measuring the adversarial gradient contribution of different intermediate layers of a network. Based on the ANS value, we append a detector to the most sensitive layer. In prior works, more complex detectors were added to a DNN, increasing the inference computational cost of the model. In contrast, our structured and strategic addition of a detector to a DNN reduces the complexity of the model while making the overall network adversarially resilient. Through comprehensive white-box and black-box experiments on MNIST, CIFAR-10, and CIFAR-100, we show that our method improves state-of-the-art detector robustness against adversarial examples. Furthermore, we validate the energy efficiency of our proposed adversarial detection methodology through an extensive energy analysis on various hardware scalable CMOS accelerator platforms. We also demonstrate the effects of quantization on our detector-appended networks.

Abstract (translated)

URL

https://arxiv.org/abs/2101.01543

PDF

https://arxiv.org/pdf/2101.01543.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot