Paper Reading AI Learner

Exploring Fault-Energy Trade-offs in Approximate DNN Hardware Accelerators

2021-01-08 05:52:12
Ayesha Siddique, Kanad Basu, Khaza Anuarul Hoque

Abstract

Systolic array-based deep neural network (DNN) accelerators have recently gained prominence for their low computational cost. However, their high energy consumption poses a bottleneck to their deployment in energy-constrained devices. To address this problem, approximate computing can be employed at the cost of some tolerable accuracy loss. However, such small accuracy variations may increase the sensitivity of DNNs towards undesired subtle disturbances, such as permanent faults. The impact of permanent faults in accurate DNNs has been thoroughly investigated in the literature. Conversely, the impact of permanent faults in approximate DNN accelerators (AxDNNs) is yet under-explored. The impact of such faults may vary with the fault bit positions, activation functions and approximation errors in AxDNN layers. Such dynamacity poses a considerable challenge to exploring the trade-off between their energy efficiency and fault resilience in AxDNNs. Towards this, we present an extensive layer-wise and bit-wise fault resilience and energy analysis of different AxDNNs, using the state-of-the-art Evoapprox8b signed multipliers. In particular, we vary the stuck-at-0, stuck-at-1 fault-bit positions, and activation functions to study their impact using the most widely used MNIST and Fashion-MNIST datasets. Our quantitative analysis shows that the permanent faults exacerbate the accuracy loss in AxDNNs when compared to the accurate DNN accelerators. For instance, a permanent fault in AxDNNs can lead up to 66\% accuracy loss, whereas the same faulty bit can lead to only 9\% accuracy loss in an accurate DNN accelerator. Our results demonstrate that the fault resilience in AxDNNs is orthogonal to the energy efficiency.

Abstract (translated)

URL

https://arxiv.org/abs/2101.02860

PDF

https://arxiv.org/pdf/2101.02860.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot