Paper Reading AI Learner

Linear Representation Meta-Reinforcement Learning for Instant Adaptation

2021-01-12 20:56:34
Matt Peng, Banghua Zhu, Jiantao Jiao

Abstract

This paper introduces Fast Linearized Adaptive Policy (FLAP), a new meta-reinforcement learning (meta-RL) method that is able to extrapolate well to out-of-distribution tasks without the need to reuse data from training, and adapt almost instantaneously with the need of only a few samples during testing. FLAP builds upon the idea of learning a shared linear representation of the policy so that when adapting to a new task, it suffices to predict a set of linear weights. A separate adapter network is trained simultaneously with the policy such that during adaptation, we can directly use the adapter network to predict these linear weights instead of updating a meta-policy via gradient descent, such as in prior meta-RL methods like MAML, to obtain the new policy. The application of the separate feed-forward network not only speeds up the adaptation run-time significantly, but also generalizes extremely well to very different tasks that prior Meta-RL methods fail to generalize to. Experiments on standard continuous-control meta-RL benchmarks show FLAP presenting significantly stronger performance on out-of-distribution tasks with up to double the average return and up to 8X faster adaptation run-time speeds when compared to prior methods.

Abstract (translated)

URL

https://arxiv.org/abs/2101.04750

PDF

https://arxiv.org/pdf/2101.04750.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot