Paper Reading AI Learner

Unsupervised heart abnormality detection based on phonocardiogram analysis with Beta Variational Auto-Encoders

2021-01-14 03:52:47
Shengchen Li, Ke Tian, Rui Wang

Abstract

Heart Sound (also known as phonocardiogram (PCG)) analysis is a popular way that detects cardiovascular diseases (CVDs). Most PCG analysis uses supervised way, which demands both normal and abnormal samples. This paper proposes a method of unsupervised PCG analysis that uses beta variational auto-encoder ($\beta-\text{VAE}$) to model the normal PCG signals. The best performed model reaches an AUC (Area Under Curve) value of 0.91 in ROC (Receiver Operating Characteristic) test for PCG signals collected from the same source. Unlike majority of $\beta-\text{VAE}$s that are used as generative models, the best-performed $\beta-\text{VAE}$ has a $\beta$ value smaller than 1. Further experiments then find that the introduction of a light weighted KL divergence between distribution of latent space and normal distribution improves the performance of anomaly PCG detection based on anomaly scores resulted by reconstruction loss. The fact suggests that anomaly score based on reconstruction loss may be better than anomaly scores based on latent vectors of samples

Abstract (translated)

URL

https://arxiv.org/abs/2101.05443

PDF

https://arxiv.org/pdf/2101.05443.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot