Paper Reading AI Learner

Comparison of Machine Learning for Sentiment Analysis in Detecting Anxiety Based on Social Media Data

2021-01-16 02:47:14
Shoffan Saifullah, Yuli Fauziah, Agus Sasmito Aribowo

Abstract

All groups of people felt the impact of the COVID-19 pandemic. This situation triggers anxiety, which is bad for everyone. The government's role is very influential in solving these problems with its work program. It also has many pros and cons that cause public anxiety. For that, it is necessary to detect anxiety to improve government programs that can increase public expectations. This study applies machine learning to detecting anxiety based on social media comments regarding government programs to deal with this pandemic. This concept will adopt a sentiment analysis in detecting anxiety based on positive and negative comments from netizens. The machine learning methods implemented include K-NN, Bernoulli, Decision Tree Classifier, Support Vector Classifier, Random Forest, and XG-boost. The data sample used is the result of crawling YouTube comments. The data used amounted to 4862 comments consisting of negative and positive data with 3211 and 1651. Negative data identify anxiety, while positive data identifies hope (not anxious). Machine learning is processed based on feature extraction of count-vectorization and TF-IDF. The results showed that the sentiment data amounted to 3889 and 973 in testing, and training with the greatest accuracy was the random forest with feature extraction of vectorization count and TF-IDF of 84.99% and 82.63%, respectively. The best precision test is K-NN, while the best recall is XG-Boost. Thus, Random Forest is the best accurate to detect someone's anxiety based-on data from social media.

Abstract (translated)

URL

https://arxiv.org/abs/2101.06353

PDF

https://arxiv.org/pdf/2101.06353.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot