Paper Reading AI Learner

Label-Efficient Point Cloud Semantic Segmentation: An Active Learning Approach

2021-01-18 08:37:21
Xian Shi, Xun Xu, Ke Chen, Lile Cai, Chuan Sheng Foo, Kui Jia

Abstract

Semantic segmentation of 3D point clouds relies on training deep models with a large amount of labeled data. However, labeling 3D point clouds is expensive, thus smart approach towards data annotation, a.k.a. active learning is essential to label-efficient point cloud segmentation. In this work, we first propose a more realistic annotation counting scheme so that a fair benchmark is possible. To better exploit labeling budget, we adopt a super-point based active learning strategy where we make use of manifold defined on the point cloud geometry. We further propose active learning strategy to encourage shape level diversity and local spatial consistency constraint. Experiments on two benchmark datasets demonstrate the efficacy of our proposed active learning strategy for label-efficient semantic segmentation of point clouds. Notably, we achieve significant improvement at all levels of annotation budgets and outperform the state-of-the-art methods under the same level of annotation cost.

Abstract (translated)

URL

https://arxiv.org/abs/2101.06931

PDF

https://arxiv.org/pdf/2101.06931.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot