Paper Reading AI Learner

Object Detection and Pose Estimation from RGB and Depth Data for Real-time, Adaptive Robotic Grasping

2021-01-18 22:22:47
S. K. Paul, M. T. Chowdhury, M. Nicolescu, M. Nicolescu

Abstract

In recent times, object detection and pose estimation have gained significant attention in the context of robotic vision applications. Both the identification of objects of interest as well as the estimation of their pose remain important capabilities in order for robots to provide effective assistance for numerous robotic applications ranging from household tasks to industrial manipulation. This problem is particularly challenging because of the heterogeneity of objects having different and potentially complex shapes, and the difficulties arising due to background clutter and partial occlusions between objects. As the main contribution of this work, we propose a system that performs real-time object detection and pose estimation, for the purpose of dynamic robot grasping. The robot has been pre-trained to perform a small set of canonical grasps from a few fixed poses for each object. When presented with an unknown object in an arbitrary pose, the proposed approach allows the robot to detect the object identity and its actual pose, and then adapt a canonical grasp in order to be used with the new pose. For training, the system defines a canonical grasp by capturing the relative pose of an object with respect to the gripper attached to the robot's wrist. During testing, once a new pose is detected, a canonical grasp for the object is identified and then dynamically adapted by adjusting the robot arm's joint angles, so that the gripper can grasp the object in its new pose. We conducted experiments using a humanoid PR2 robot and showed that the proposed framework can detect well-textured objects, and provide accurate pose estimation in the presence of tolerable amounts of out-of-plane rotation. The performance is also illustrated by the robot successfully grasping objects from a wide range of arbitrary poses.

Abstract (translated)

URL

https://arxiv.org/abs/2101.07347

PDF

https://arxiv.org/pdf/2101.07347.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot