Paper Reading AI Learner

Generative Autoencoder Kernels on Deep Learning for Brain Activity Analysis

2021-01-21 08:19:47
Gokhan Altan, Yakup Kutlu

Abstract

Deep Learning (DL) is a two-step classification model that consists feature learning, generating feature representations using unsupervised ways and the supervised learning stage at the last step of model using at least two hidden layers on the proposed structures by fully connected layers depending on of the artificial neural networks. The optimization of the predefined classification parameters for the supervised models eases reaching the global optimality with exact zero training error. The autoencoder (AE) models are the highly generalized ways of the unsupervised stages for the DL to define the output weights of the hidden neurons with various representations. As alternatively to the conventional Extreme Learning Machines (ELM) AE, Hessenberg decomposition-based ELM autoencoder (HessELM-AE) is a novel kernel to generate different presentations of the input data within the intended sizes of the models. The aim of the study is analyzing the performance of the novel Deep AE kernel for clinical availability on electroencephalogram (EEG) with stroke patients. The slow cortical potentials (SCP) training in stroke patients during eight neurofeedback sessions were analyzed using Hilbert-Huang Transform. The statistical features of different frequency modulations were fed into the Deep ELM model for generative AE kernels. The novel Deep ELM-AE kernels have discriminated the brain activity with high classification performances for positivity and negativity tasks in stroke patients.

Abstract (translated)

URL

https://arxiv.org/abs/2101.10263

PDF

https://arxiv.org/pdf/2101.10263.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot