Paper Reading AI Learner

Boosting Segmentation Performance across datasets using histogram specification with application to pelvic bone segmentation

2021-01-26 23:48:40
Prabhakara Subramanya Jois, Aniketh Manjunath, Thomas Fevens

Abstract

Accurate segmentation of the pelvic CTs is crucial for the clinical diagnosis of pelvic bone diseases and for planning patient-specific hip surgeries. With the emergence and advancements of deep learning for digital healthcare, several methodologies have been proposed for such segmentation tasks. But in a low data scenario, the lack of abundant data needed to train a Deep Neural Network is a significant bottle-neck. In this work, we propose a methodology based on modulation of image tonal distributions and deep learning to boost the performance of networks trained on limited data. The strategy involves pre-processing of test data through histogram specification. This simple yet effective approach can be viewed as a style transfer methodology. The segmentation task uses a U-Net configuration with an EfficientNet-B0 backbone, optimized using an augmented BCE-IoU loss function. This configuration is validated on a total of 284 images taken from two publicly available CT datasets, TCIA (a cancer imaging archive) and the Visible Human Project. The average performance measures for the Dice coefficient and Intersection over Union are 95.7% and 91.9%, respectively, give strong evidence for the effectiveness of the approach, which is highly competitive with state-of-the-art methodologies.

Abstract (translated)

URL

https://arxiv.org/abs/2101.11135

PDF

https://arxiv.org/pdf/2101.11135.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot