Paper Reading AI Learner

Inferring spatial relations from textual descriptions of images

2021-02-01 17:21:13
Aitzol Elu, Gorka Azkune, Oier Lopez de Lacalle, Ignacio Arganda-Carreras, Aitor Soroa, Eneko Agirre

Abstract

Generating an image from its textual description requires both a certain level of language understanding and common sense knowledge about the spatial relations of the physical entities being described. In this work, we focus on inferring the spatial relation between entities, a key step in the process of composing scenes based on text. More specifically, given a caption containing a mention to a subject and the location and size of the bounding box of that subject, our goal is to predict the location and size of an object mentioned in the caption. Previous work did not use the caption text information, but a manually provided relation holding between the subject and the object. In fact, the used evaluation datasets contain manually annotated ontological triplets but no captions, making the exercise unrealistic: a manual step was required; and systems did not leverage the richer information in captions. Here we present a system that uses the full caption, and Relations in Captions (REC-COCO), a dataset derived from MS-COCO which allows to evaluate spatial relation inference from captions directly. Our experiments show that: (1) it is possible to infer the size and location of an object with respect to a given subject directly from the caption; (2) the use of full text allows to place the object better than using a manually annotated relation. Our work paves the way for systems that, given a caption, decide which entities need to be depicted and their respective location and sizes, in order to then generate the final image.

Abstract (translated)

URL

https://arxiv.org/abs/2102.00997

PDF

https://arxiv.org/pdf/2102.00997.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot