Paper Reading AI Learner

Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition

2021-02-01 18:53:40
Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xiuyu Sun, Qi Qian, Hao Li, Rong Jin

Abstract

A key component in Neural Architecture Search (NAS) is an accuracy predictor which asserts the accuracy of a queried architecture. To build a high quality accuracy predictor, conventional NAS algorithms rely on training a mass of architectures or a big supernet. This step often consumes hundreds to thousands of GPU days, dominating the total search cost. To address this issue, we propose to replace the accuracy predictor with a novel model-complexity index named Zen-score. Instead of predicting model accuracy, Zen-score directly asserts the model complexity of a network without training its parameters. This is inspired by recent advances in deep learning theories which show that model complexity of a network positively correlates to its accuracy on the target dataset. The computation of Zen-score only takes a few forward inferences through a randomly initialized network using random Gaussian input. It is applicable to any Vanilla Convolutional Neural Networks (VCN-networks) or compatible variants, covering a majority of networks popular in real-world applications. When combining Zen-score with Evolutionary Algorithm, we obtain a novel Zero-Shot NAS algorithm named Zen-NAS. We conduct extensive experiments on CIFAR10/CIFAR100 and ImageNet. In summary, Zen-NAS is able to design high performance architectures in less than half GPU day (12 GPU hours). The resultant networks, named ZenNets, achieve up to $83.0\%$ top-1 accuracy on ImageNet. Comparing to EfficientNets-B3/B5 of the same or better accuracies, ZenNets are up to $5.6$ times faster on NVIDIA V100, $11$ times faster on NVIDIA T4, $2.6$ times faster on Google Pixel2 and uses $50\%$ less FLOPs. Our source code and pre-trained models are released on this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2102.01063

PDF

https://arxiv.org/pdf/2102.01063.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot