Paper Reading AI Learner

1000 Pupil Segmentations in a Second using Haar Like Features and Statistical Learning

2021-02-03 07:45:04
Wolfgang Fuhl

Abstract

In this paper we present a new approach for pupil segmentation. It can be computed and trained very efficiently, making it ideal for online use for high speed eye trackers as well as for energy saving pupil detection in mobile eye tracking. The approach is inspired by the BORE and CBF algorithms and generalizes the binary comparison by Haar features. Since these features are intrinsically very susceptible to noise and fluctuating light conditions, we combine them with conditional pupil shape probabilities. In addition, we also rank each feature according to its importance in determining the pupil shape. Another advantage of our method is the use of statistical learning, which is very efficient and can even be used online. this https URL

Abstract (translated)

URL

https://arxiv.org/abs/2102.01921

PDF

https://arxiv.org/pdf/2102.01921.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot