Paper Reading AI Learner

GaitSet: Cross-view Gait Recognition through Utilizing Gait as a Deep Set

2021-02-05 15:49:54
Hanqing Chao, Kun Wang, Yiwei He, Junping Zhang, Jianfeng Feng

Abstract

Gait is a unique biometric feature that can be recognized at a distance; thus, it has broad applications in crime prevention, forensic identification, and social security. To portray a gait, existing gait recognition methods utilize either a gait template which makes it difficult to preserve temporal information, or a gait sequence that maintains unnecessary sequential constraints and thus loses the flexibility of gait recognition. In this paper, we present a novel perspective that utilizes gait as a deep set, which means that a set of gait frames are integrated by a global-local fused deep network inspired by the way our left- and right-hemisphere processes information to learn information that can be used in identification. Based on this deep set perspective, our method is immune to frame permutations, and can naturally integrate frames from different videos that have been acquired under different scenarios, such as diverse viewing angles, different clothes, or different item-carrying conditions. Experiments show that under normal walking conditions, our single-model method achieves an average rank-1 accuracy of 96.1% on the CASIA-B gait dataset and an accuracy of 87.9% on the OU-MVLP gait dataset. Under various complex scenarios, our model also exhibits a high level of robustness. It achieves accuracies of 90.8% and 70.3% on CASIA-B under bag-carrying and coat-wearing walking conditions respectively, significantly outperforming the best existing methods. Moreover, the proposed method maintains a satisfactory accuracy even when only small numbers of frames are available in the test samples; for example, it achieves 85.0% on CASIA-B even when using only 7 frames. The source code has been released at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2102.03247

PDF

https://arxiv.org/pdf/2102.03247.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot