Paper Reading AI Learner

Drug Package Recommendation via Interaction-aware Graph Induction

2021-02-06 12:51:00
Zhi Zheng, Chao Wang, Tong Xu, Dazhong Shen, Penggang Qin, Baoxing Huai, Tongzhu Liu, Enhong Chen

Abstract

Recent years have witnessed the rapid accumulation of massive electronic medical records (EMRs), which highly support the intelligent medical services such as drug recommendation. However, prior arts mainly follow the traditional recommendation strategies like collaborative filtering, which usually treat individual drugs as mutually independent, while the latent interactions among drugs, e.g., synergistic or antagonistic effect, have been largely ignored. To that end, in this paper, we target at developing a new paradigm for drug package recommendation with considering the interaction effect within drugs, in which the interaction effects could be affected by patient conditions. Specifically, we first design a pre-training method based on neural collaborative filtering to get the initial embedding of patients and drugs. Then, the drug interaction graph will be initialized based on medical records and domain knowledge. Along this line, we propose a new Drug Package Recommendation (DPR) framework with two variants, respectively DPR on Weighted Graph (DPR-WG) and DPR on Attributed Graph (DPR-AG) to solve the problem, in which each the interactions will be described as signed weights or attribute vectors. In detail, a mask layer is utilized to capture the impact of patient condition, and graph neural networks (GNNs) are leveraged for the final graph induction task to embed the package. Extensive experiments on a real-world data set from a first-rate hospital demonstrate the effectiveness of our DPR framework compared with several competitive baseline methods, and further support the heuristic study for the drug package generation task with adequate performance.

Abstract (translated)

URL

https://arxiv.org/abs/2102.03577

PDF

https://arxiv.org/pdf/2102.03577.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot