Paper Reading AI Learner

A Unified Lottery Ticket Hypothesis for Graph Neural Networks

2021-02-12 21:52:43
Tianlong Chen, Yongduo Sui, Xuxi Chen, Aston Zhang, Zhangyang Wang

Abstract

With graphs rapidly growing in size and deeper graph neural networks (GNNs) emerging, the training and inference of GNNs become increasingly expensive. Existing network weight pruning algorithms cannot address the main space and computational bottleneck in GNNs, caused by the size and connectivity of the graph. To this end, this paper first presents a unified GNN sparsification (UGS) framework that simultaneously prunes the graph adjacency matrix and the model weights, for effectively accelerating GNN inference on large-scale graphs. Leveraging this new tool, we further generalize the recently popular lottery ticket hypothesis to GNNs for the first time, by defining a graph lottery ticket (GLT) as a pair of core sub-dataset and sparse sub-network, which can be jointly identified from the original GNN and the full dense graph by iteratively applying UGS. Like its counterpart in convolutional neural networks, GLT can be trained in isolation to match the performance of training with the full model and graph, and can be drawn from both randomly initialized and self-supervised pre-trained GNNs. Our proposal has been experimentally verified across various GNN architectures and diverse tasks, on both small-scale graph datasets (Cora, Citeseer and PubMed), and large-scale datasets from the challenging Open Graph Benchmark (OGB). Specifically, for node classification, our found GLTs achieve the same accuracies with 20%~98% MACs saving on small graphs and 25%~85% MACs saving on large ones. For link prediction, GLTs lead to 48%~97% and 70% MACs saving on small and large graph datasets, respectively, without compromising predictive performance. Codes available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2102.06790

PDF

https://arxiv.org/pdf/2102.06790.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot