Paper Reading AI Learner

Naturalizing Neuromorphic Vision Event Streams Using GANs

2021-02-14 20:48:30
Dennis Robey, Wesley Thio, Herbert Iu, Jason Eshraghian

Abstract

Dynamic vision sensors are able to operate at high temporal resolutions within resource constrained environments, though at the expense of capturing static content. The sparse nature of event streams enables efficient downstream processing tasks as they are suited for power-efficient spiking neural networks. One of the challenges associated with neuromorphic vision is the lack of interpretability of event streams. While most application use-cases do not intend for the event stream to be visually interpreted by anything other than a classification network, there is a lost opportunity to integrating these sensors in spaces that conventional high-speed CMOS sensors cannot go. For example, biologically invasive sensors such as endoscopes must fit within stringent power budgets, which do not allow MHz-speeds of image integration. While dynamic vision sensing can fill this void, the interpretation challenge remains and will degrade confidence in clinical diagnostics. The use of generative adversarial networks presents a possible solution to overcoming and compensating for a vision chip's poor spatial resolution and lack of interpretability. In this paper, we methodically apply the Pix2Pix network to naturalize the event stream from spike-converted CIFAR-10 and Linnaeus 5 datasets. The quality of the network is benchmarked by performing image classification of naturalized event streams, which converges to within 2.81% of equivalent raw images, and an associated improvement over unprocessed event streams by 13.19% for the CIFAR-10 and Linnaeus 5 datasets.

Abstract (translated)

URL

https://arxiv.org/abs/2102.07243

PDF

https://arxiv.org/pdf/2102.07243.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot