Paper Reading AI Learner

Meta-Path-Free Representation Learning on Heterogeneous Networks

2021-02-16 12:37:38
Jie Zhang, Jinru Ding, Suyuan Liu, Hongyan Wu

Abstract

Real-world networks and knowledge graphs are usually heterogeneous networks. Representation learning on heterogeneous networks is not only a popular but a pragmatic research field. The main challenge comes from the heterogeneity -- the diverse types of nodes and edges. Besides, for a given node in a HIN, the significance of a neighborhood node depends not only on the structural distance but semantics. How to effectively capture both structural and semantic relations is another challenge. The current state-of-the-art methods are based on the algorithm of meta-path and therefore have a serious disadvantage -- the performance depends on the arbitrary choosing of meta-path(s). However, the selection of meta-path(s) is experience-based and time-consuming. In this work, we propose a novel meta-path-free representation learning on heterogeneous networks, namely Heterogeneous graph Convolutional Networks (HCN). The proposed method fuses the heterogeneity and develops a $k$-strata algorithm ($k$ is an integer) to capture the $k$-hop structural and semantic information in heterogeneous networks. To the best of our knowledge, this is the first attempt to break out of the confinement of meta-paths for representation learning on heterogeneous networks. We carry out extensive experiments on three real-world heterogeneous networks. The experimental results demonstrate that the proposed method significantly outperforms the current state-of-the-art methods in a variety of analytic tasks.

Abstract (translated)

URL

https://arxiv.org/abs/2102.08120

PDF

https://arxiv.org/pdf/2102.08120.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot