Paper Reading AI Learner

Resource allocation in dynamic multiagent systems

2021-02-16 17:56:23
Niall Creech, Natalia Criado Pacheco, Simon Miles

Abstract

Resource allocation and task prioritisation are key problem domains in the fields of autonomous vehicles, networking, and cloud computing. The challenge in developing efficient and robust algorithms comes from the dynamic nature of these systems, with many components communicating and interacting in complex ways. The multi-group resource allocation optimisation (MG-RAO) algorithm we present uses multiple function approximations of resource demand over time, alongside reinforcement learning techniques, to develop a novel method of optimising resource allocation in these multi-agent systems. This method is applicable where there are competing demands for shared resources, or in task prioritisation problems. Evaluation is carried out in a simulated environment containing multiple competing agents. We compare the new algorithm to an approach where child agents distribute their resources uniformly across all the tasks they can be allocated. We also contrast the performance of the algorithm where resource allocation is modelled separately for groups of agents, as to being modelled jointly over all agents. The MG-RAO algorithm shows a 23 - 28% improvement over fixed resource allocation in the simulated environments. Results also show that, in a volatile system, using the MG-RAO algorithm configured so that child agents model resource allocation for all agents as a whole has 46.5% of the performance of when it is set to model multiple groups of agents. These results demonstrate the ability of the algorithm to solve resource allocation problems in multi-agent systems and to perform well in dynamic environments.

Abstract (translated)

URL

https://arxiv.org/abs/2102.08317

PDF

https://arxiv.org/pdf/2102.08317.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot