Paper Reading AI Learner

SSFG: Stochastically Scaling Features and Gradients for Regularizing Graph Convolution Networks

2021-02-20 12:59:48
Haimin Zhang, Min Xu

Abstract

Graph convolutional networks have been successfully applied in various graph-based tasks. In a typical graph convolutional layer, node features are computed by aggregating neighborhood information. Repeatedly applying graph convolutions can cause the oversmoothing issue, i.e., node features converge to similar values. This is one of the major reasons that cause overfitting in graph learning, resulting in the model fitting well to training data while not generalizing well on test data. In this paper, we present a stochastic regularization method to address this issue. In our method, we stochastically scale features and gradients (SSFG) by a factor sampled from a probability distribution in the training procedure. We show that applying stochastic scaling at the feature level is complementary to that at the gradient level in improving the overall performance. When used together with ReLU, our method can be seen as a stochastic ReLU. We experimentally validate our SSFG regularization method on seven benchmark datasets for different graph-based tasks. Extensive experimental results demonstrate that our method effectively improves the overall performance of the baseline graph networks.

Abstract (translated)

URL

https://arxiv.org/abs/2102.10338

PDF

https://arxiv.org/pdf/2102.10338.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot