Paper Reading AI Learner

Multimodal Punctuation Prediction with Contextual Dropout

2021-02-12 22:15:30
Andrew Silva, Barry-John Theobald, Nicholas Apostoloff

Abstract

Automatic speech recognition (ASR) is widely used in consumer electronics. ASR greatly improves the utility and accessibility of technology, but usually the output is only word sequences without punctuation. This can result in ambiguity in inferring user-intent. We first present a transformer-based approach for punctuation prediction that achieves 8% improvement on the IWSLT 2012 TED Task, beating the previous state of the art [1]. We next describe our multimodal model that learns from both text and audio, which achieves 8% improvement over the text-only algorithm on an internal dataset for which we have both the audio and transcriptions. Finally, we present an approach to learning a model using contextual dropout that allows us to handle variable amounts of future context at test time.

Abstract (translated)

URL

https://arxiv.org/abs/2102.11012

PDF

https://arxiv.org/pdf/2102.11012.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot