Paper Reading AI Learner

Where the Action is: Let's make Reinforcement Learning for Stochastic Dynamic Vehicle Routing Problems work!

2021-02-28 13:26:35
Florentin D Hildebrandt, Barrett Thomas, Marlin W Ulmer

Abstract

There has been a paradigm-shift in urban logistic services in the last years; demand for real-time, instant mobility and delivery services grows. This poses new challenges to logistic service providers as the underlying stochastic dynamic vehicle routing problems (SDVRPs) require anticipatory real-time routing actions. Searching the combinatorial action space for efficient routing actions is by itself a complex task of mixed-integer programming (MIP) well-known by the operations research community. This complexity is now multiplied by the challenge of evaluating such actions with respect to their effectiveness given future dynamism and uncertainty, a potentially ideal case for reinforcement learning (RL) well-known by the computer science community. For solving SDVRPs, joint work of both communities is needed, but as we show, essentially non-existing. Both communities focus on their individual strengths leaving potential for improvement. Our survey paper highlights this potential in research originating from both communities. We point out current obstacles in SDVRPs and guide towards joint approaches to overcome them.

Abstract (translated)

URL

https://arxiv.org/abs/2103.00507

PDF

https://arxiv.org/pdf/2103.00507.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot