Paper Reading AI Learner

Learning Large-scale Location Embedding From Human Mobility Trajectories with Graphs

2021-02-23 09:11:33
Chenyu Tian, Yuchun Zhang, Zefeng Weng

Abstract

GPS coordinates and other location indicators are fine-grained location indicators that are difficult to be effectively utilized by machine learning models in Geo-aware applications. Previous location embedding methods are mostly tailored for specific problems that are taken place within areas of interest. When it comes to the scale of the entire cities, existing approaches always suffer from extensive computational cost and signigicant information loss. An increasing amount of location-based service (LBS) data are being accumulated and released to the public and enables us to study urban dynamics and human mobility. This study learns vector representations for locations using the large-scale LBS data. Different from existing studies, we propose to consider both spatial connection and human mobility, and jointly learn the representations from a flow graph and a spatial graph through a GCN-aided skip-gram model named GCN-L2V. This model embeds context information in human mobility and spatial information. By doing so, GCN-L2V is able to capture relationships among locations and provide a better notion of semantic similarity in a spatial environment. Across quantitative experiments and case studies, we empirically demonstrate that the representations learned by GCN-L2V are effective. GCN-L2V can be applied in a complementary manner to other place embedding methods and down-streaming Geo-aware applications.

Abstract (translated)

URL

https://arxiv.org/abs/2103.00483

PDF

https://arxiv.org/pdf/2103.00483.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot