Paper Reading AI Learner

Believe The HiPe: Hierarchical Perturbation for Fast and Robust Explanation of Black Box Models

2021-02-22 18:22:56
Jessica Cooper, Ognjen Arandjelović, David Harrison

Abstract

Understanding the predictions made by Artificial Intelligence (AI) systems is becoming more and more important as deep learning models are used for increasingly complex and high-stakes tasks. Saliency mapping - an easily interpretable visual attribution method - is one important tool for this, but existing formulations are limited by either computational cost or architectural constraints. We therefore propose Hierarchical Perturbation, a very fast and completely model-agnostic method for explaining model predictions with robust saliency maps. Using standard benchmarks and datasets, we show that our saliency maps are of competitive or superior quality to those generated by existing black-box methods - and are over 20x faster to compute.

Abstract (translated)

URL

https://arxiv.org/abs/2103.05108

PDF

https://arxiv.org/pdf/2103.05108.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot