Paper Reading AI Learner

Highly Efficient Representation and Active Learning Framework for Imbalanced Data and its Application to COVID-19 X-Ray Classification

2021-02-25 02:48:59
Heng Hao, Sima Didari, Jae Oh Woo, Hankyu Moon, Patrick Bangert

Abstract

We propose a highly data-efficient classification and active learning framework for classifying chest X-rays. It is based on (1) unsupervised representation learning of a CNN (Convolutional Neural Network) and (2) the GP (Gaussian Process) method. The unsupervised representation learning employs self-supervision that does not require class labels, and the learned features are proven to achieve label-efficient classification. GP is a kernel-based Bayesian approach that also leads to data-efficient predictions with the added benefit of estimating each decision's uncertainty. Our novel framework combines these two elements in sequence to achieve highly data and label efficient classifications. Moreover, both elements are less sensitive to the prevalent and challenging class imbalance issue, thanks to the (1) feature learned without labels and (2) the Bayesian nature of GP. The GP-provided uncertainty estimates enable active learning by ranking samples based on the uncertainty and selectively labeling samples showing higher uncertainty. We apply this novel combination to the data-deficient and severely imbalanced case of COVID-19 chest X-ray classification. We demonstrate that only $\sim 10\%$ of the labeled data is needed to reach the accuracy from training all available labels. Its application to the COVID-19 data in a fully supervised classification scenario shows that our model, with a generic ResNet backbone, outperforms (COVID-19 case by 4\%) the state-of-the-art model with a highly tuned architecture. Our model architecture and proposed framework are general and straightforward to apply to a broader class of datasets, with expected success.

Abstract (translated)

URL

https://arxiv.org/abs/2103.05109

PDF

https://arxiv.org/pdf/2103.05109.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot