Paper Reading AI Learner

Universal Undersampled MRI Reconstruction

2021-03-09 04:25:22
Xinwen Liu, Jing Wang, Feng Liu, S.Kevin Zhou

Abstract

Deep neural networks have been extensively studied for undersampled MRI reconstruction. While achieving state-of-the-art performance, they are trained and deployed specifically for one anatomy with limited generalization ability to another anatomy. Rather than building multiple models, a universal model that reconstructs images across different anatomies is highly desirable for efficient deployment and better generalization. Simply mixing images from multiple anatomies for training a single network does not lead to an ideal universal model due to the statistical shift among datasets of various anatomies, the need to retrain from scratch on all datasets with the addition of a new dataset, and the difficulty in dealing with imbalanced sampling when the new dataset is further of a smaller size. In this paper, for the first time, we propose a framework to learn a universal deep neural network for undersampled MRI reconstruction. Specifically, anatomy-specific instance normalization is proposed to compensate for statistical shift and allow easy generalization to new datasets. Moreover, the universal model is trained by distilling knowledge from available independent models to further exploit representations across anatomies. Experimental results show the proposed universal model can reconstruct both brain and knee images with high image quality. Also, it is easy to adapt the trained model to new datasets of smaller size, i.e., abdomen, cardiac and prostate, with little effort and superior performance.

Abstract (translated)

URL

https://arxiv.org/abs/2103.05214

PDF

https://arxiv.org/pdf/2103.05214.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot