Paper Reading AI Learner

Evaluating COPY-BLEND Augmentation for Low Level Vision Tasks

2021-03-10 06:17:52
Pranjay Shyam, Sandeep Singh Sengar, Kuk-Jin Yoon, Kyung-Soo Kim

Abstract

Region modification-based data augmentation techniques have shown to improve performance for high level vision tasks (object detection, semantic segmentation, image classification, etc.) by encouraging underlying algorithms to focus on multiple discriminative features. However, as these techniques destroy spatial relationship with neighboring regions, performance can be deteriorated when using them to train algorithms designed for low level vision tasks (low light image enhancement, image dehazing, deblurring, etc.) where textural consistency between recovered and its neighboring regions is important to ensure effective performance. In this paper, we examine the efficacy of a simple copy-blend data augmentation technique that copies patches from noisy images and blends onto a clean image and vice versa to ensure that an underlying algorithm localizes and recovers affected regions resulting in increased perceptual quality of a recovered image. To assess performance improvement, we perform extensive experiments alongside different region modification-based augmentation techniques and report observations such as improved performance, reduced requirement for training dataset, and early convergence across tasks such as low light image enhancement, image dehazing and image deblurring without any modification to baseline algorithm.

Abstract (translated)

URL

https://arxiv.org/abs/2103.05889

PDF

https://arxiv.org/pdf/2103.05889.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot