Paper Reading AI Learner

Auto-COP: Adaptation Generation in Context-Oriented Programming using Reinforcement Learning Options

2021-03-11 16:14:56
Nicolás Cardozo, Ivana Dusparic

Abstract

Self-adaptive software systems continuously adapt in response to internal and external changes in their execution environment, captured as contexts. The COP paradigm posits a technique for the development of self-adaptive systems, capturing their main characteristics with specialized programming language constructs. COP adaptations are specified as independent modules composed in and out of the base system as contexts are activated and deactivated in response to sensed circumstances from the surrounding environment. However, the definition of adaptations, their contexts and associated specialized behavior, need to be specified at design time. In complex CPS this is intractable due to new unpredicted operating conditions. We propose Auto-COP, a new technique to enable generation of adaptations at run time. Auto-COP uses RL options to build action sequences, based on the previous instances of the system execution. Options are explored in interaction with the environment, and the most suitable options for each context are used to generate adaptations exploiting COP. To validate Auto-COP, we present two case studies exhibiting different system characteristics and application domains: a driving assistant and a robot delivery system. We present examples of Auto-COP code generated at run time, to illustrate the types of circumstances (contexts) requiring adaptation, and the corresponding generated adaptations for each context. We confirm that the generated adaptations exhibit correct system behavior measured by domain-specific performance metrics, while reducing the number of required execution/actuation steps by a factor of two showing that the adaptations are regularly selected by the running system as adaptive behavior is more appropriate than the execution of primitive actions.

Abstract (translated)

URL

https://arxiv.org/abs/2103.06757

PDF

https://arxiv.org/pdf/2103.06757.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot