Paper Reading AI Learner

Policy Search with Rare Significant Events: Choosing the Right Partner to Cooperate with

2021-03-11 18:14:41
Paul Ecoffet, Nicolas Fontbonne, Jean-Baptiste André, Nicolas Bredeche

Abstract

This paper focuses on a class of reinforcement learning problems where significant events are rare and limited to a single positive reward per episode. A typical example is that of an agent who has to choose a partner to cooperate with, while a large number of partners are simply not interested in cooperating, regardless of what the agent has to offer. We address this problem in a continuous state and action space with two different kinds of search methods: a gradient policy search method and a direct policy search method using an evolution strategy. We show that when significant events are rare, gradient information is also scarce, making it difficult for policy gradient search methods to find an optimal policy, with or without a deep neural architecture. On the other hand, we show that direct policy search methods are invariant to the rarity of significant events, which is yet another confirmation of the unique role evolutionary algorithms has to play as a reinforcement learning method.

Abstract (translated)

URL

https://arxiv.org/abs/2103.06846

PDF

https://arxiv.org/pdf/2103.06846.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot