Paper Reading AI Learner

Face Images as Jigsaw Puzzles: Compositional Perception of Human Faces for Machines Using Generative Adversarial Networks

2021-03-10 20:25:38
Mahla Abdolahnejad, Peter Xiaoping Liu

Abstract

An important goal in human-robot-interaction (HRI) is for machines to achieve a close to human level of face perception. One of the important differences between machine learning and human intelligence is the lack of compositionality. This paper introduces a new scheme to enable generative adversarial networks to learn the distribution of face images composed of smaller parts. This results in a more flexible machine face perception and easier generalization to outside training examples. We demonstrate that this model is able to produce realistic high-quality face images by generating and piecing together the parts. Additionally, we demonstrate that this model learns the relations between the facial parts and their distributions. Therefore, the specific facial parts are interchangeable between generated face images.

Abstract (translated)

URL

https://arxiv.org/abs/2103.06331

PDF

https://arxiv.org/pdf/2103.06331.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot