Paper Reading AI Learner

A Weakly Supervised Approach for Classifying Stance in Twitter Replies

2021-03-12 06:02:45
Sumeet Kumar, Ramon Villa Cox, Matthew Babcock, Kathleen M. Carley

Abstract

Conversations on social media (SM) are increasingly being used to investigate social issues on the web, such as online harassment and rumor spread. For such issues, a common thread of research uses adversarial reactions, e.g., replies pointing out factual inaccuracies in rumors. Though adversarial reactions are prevalent in online conversations, inferring those adverse views (or stance) from the text in replies is difficult and requires complex natural language processing (NLP) models. Moreover, conventional NLP models for stance mining need labeled data for supervised learning. Getting labeled conversations can itself be challenging as conversations can be on any topic, and topics change over time. These challenges make learning the stance a difficult NLP problem. In this research, we first create a new stance dataset comprised of three different topics by labeling both users' opinions on the topics (as in pro/con) and users' stance while replying to others' posts (as in favor/oppose). As we find limitations with supervised approaches, we propose a weakly-supervised approach to predict the stance in Twitter replies. Our novel method allows using a smaller number of hashtags to generate weak labels for Twitter replies. Compared to supervised learning, our method improves the mean F1-macro by 8\% on the hand-labeled dataset without using any hand-labeled examples in the training set. We further show the applicability of our proposed method on COVID 19 related conversations on Twitter.

Abstract (translated)

URL

https://arxiv.org/abs/2103.07098

PDF

https://arxiv.org/pdf/2103.07098.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot