Paper Reading AI Learner

FES: A Fast Efficient Scalable QoS Prediction Framework

2021-03-12 19:28:17
Soumi Chattopadhyay, Chandranath Adak, Ranjana Roy Chowdhury

Abstract

Quality-of-Service prediction of web service is an integral part of services computing due to its diverse applications in the various facets of a service life cycle, such as service composition, service selection, service recommendation. One of the primary objectives of designing a QoS prediction algorithm is to achieve satisfactory prediction accuracy. However, accuracy is not the only criteria to meet while developing a QoS prediction algorithm. The algorithm has to be faster in terms of prediction time so that it can be integrated into a real-time recommendation or composition system. The other important factor to consider while designing the prediction algorithm is scalability to ensure that the prediction algorithm can tackle large-scale datasets. The existing algorithms on QoS prediction often compromise on one goal while ensuring the others. In this paper, we propose a semi-offline QoS prediction model to achieve three important goals simultaneously: higher accuracy, faster prediction time, scalability. Here, we aim to predict the QoS value of service that varies across users. Our framework consists of multi-phase prediction algorithms: preprocessing-phase prediction, online prediction, and prediction using the pre-trained model. In the preprocessing phase, we first apply multi-level clustering on the dataset to obtain correlated users and services. We then preprocess the clusters using collaborative filtering to remove the sparsity of the given QoS invocation log matrix. Finally, we create a two-staged, semi-offline regression model using neural networks to predict the QoS value of service to be invoked by a user in real-time. Our experimental results on four publicly available WS-DREAM datasets show the efficiency in terms of accuracy, scalability, fast responsiveness of our framework as compared to the state-of-the-art methods.

Abstract (translated)

URL

https://arxiv.org/abs/2103.07494

PDF

https://arxiv.org/pdf/2103.07494.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot