Paper Reading AI Learner

Learning needle insertion from sample task executions

2021-03-14 14:23:17
Amir Ghalamzan-E

Abstract

Automating a robotic task, e.g., robotic suturing can be very complex and time-consuming. Learning a task model to autonomously perform the task is invaluable making the technology, robotic surgery, accessible for a wider community. The data of robotic surgery can be easily logged where the collected data can be used to learn task models. This will result in reduced time and cost of robotic surgery in which a surgeon can supervise the robot operation or give high-level commands instead of low-level control of the tools. We present a data-set of needle insertion in soft tissue with two arms where Arm 1 inserts the needle into the tissue and Arm 2 actively manipulate the soft tissue to ensure the desired and actual exit points are the same. This is important in real-surgery because suturing without active manipulation of tissue may yield failure of the suturing as the stitch may not grip enough tissue to resist the force applied for the suturing. We present a needle insertion dataset including 60 successful trials recorded by 3 pair of stereo cameras. Moreover, we present Deep-robot Learning from Demonstrations that predicts the desired state of the robot at the time step after t (which the optimal action taken at t yields) by looking at the video of the past time steps, i.e. n step time history where N is the memory time window, of the task execution. The experimental results illustrate our proposed deep model architecture is outperforming the existing methods. Although the solution is not yet ready to be deployed on a real robot, the results indicate the possibility of future development for real robot deployment.

Abstract (translated)

URL

https://arxiv.org/abs/2103.07938

PDF

https://arxiv.org/pdf/2103.07938.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot